Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech) | 978-1-6654-6297-6/22/$31.00 ©2022 IEEE | DOI: 10.1109/DASC/PiCom/CBDCom/Cy55231.2022.9928021

and Secure C

2022 IEEE Intl Conf on Deg

Physical Activity Recognition using Deep Transfer
Learning with Convolutional Neural Networks

Berke Ataseven® Alireza Madani*
Mechanical Engineering  Mechanical Engineering
Koc University Koc University
Istanbul, Turkey Istanbul, Turkey
batasevenl5 @ku.edu.tr amadani20 @ku.edu.tr

Abstract—Current wearable devices are capable of monitoring
various health indicators as well as fitness and/or physical activity
types. However, even on the latest models of many wearable
devices, users need to manually enter the type of work-out or
physical activity they are performing. In order to automate real-
time physical activity recognition, in this study, we develop a deep
transfer learning-based physical activity recognition framework
using acceleration data acquired through inertial measurement
units (IMUs). Towards this goal, we modify a pre-trained version
of the GoogLeNet convolutional neural network and fine-tune
it with data from IMUs. To make IMU data compatible with
GooglLeNet, we propose three novel data transform approaches
based on continuous wavelet transform: Horizontal Concatena-
tion (HC), Acceleration-Magnitude (AM), and Pixelwise Axes-
Averaging (PA). We evaluate the performance of our approaches
using the real-world PAMAP2 dataset. The three approaches
result in 0.93, 0.95 and 0.98 validation accuracy and 0.75, 0.85
and 0.91 test accuracy, respectively. The PA approach yields the
highest weighted F1 score (0.91) and activity-specific true positive
ratios. Overall, our methods and results show that accurate real-
time physical activity recognition can be achieved using transfer
learning and convolutional neural networks.

Index Terms—Convolutional Neural Networks, Transfer
Learning, Wavelet Analysis, Physical Activity Recognition

I. INTRODUCTION

Advancements in wearable sensor technology have made
it feasible to integrate many sensor modalities into electronic
devices, which enable unobtrusive and continuous acquisition
of various physiological signals and parameters [1]. Once
analyzed through appropriate algorithms, these signals can be
converted into actionable metrics for achieving non-invasive
health monitoring [2]. Indeed, there has been a leap forward
towards adding health monitoring functionalities into wearable
devices, such as smart bracelets and smart watches. With
current smart devices available in the market, users can now
assess physiological parameters such as heart rate, irregular
rhythm, respiration rate and blood oxygen saturation [3]-[5].

In addition to monitoring clinical data such as pulmonary
and cardiovascular indicators, another eminent purpose of
wearable devices is to track fitness, physical activity, and en-
ergy consumption. Nevertheless, one of the present challenges
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is that even on the latest models of these devices, users need to
manually enter the type of work-out or physical activity they
are performing. Based on the user’s entry, the device can then
use the associated pre-trained models to assess fitness perfor-
mance and energy/calorie expenditure [6]. Although there have
been several studies focusing on physical activity assessment
using single and/or multiple accelerometers attached on wrist,
hip, ankle and foot [7]-[12], these frameworks are not suitable
for automatic and real-time activity monitoring. Therefore,
achieving automatic and real-time physical activity recognition
remains as an open research question.

In recent years, deep learning methods, in particular Con-
volutional Neural Networks (CNNs), have achieved remark-
able success in many machine learning problems [13], [14].
However, it is oftentimes difficult to train large CNNs from
scratch since they are data-hungry (i.e., they require a large
number of labeled training samples) and resource-hungry (i.e.,
training large CNNs can take multiple days even on expensive
hardware). Therefore, transfer learning has become an effec-
tive strategy to leverage the power of pretrained CNN models.
Transfer learning enables the transfer of knowledge gained
in solving one problem towards solving another problem. For
example, consider a supervised machine learning problem A,
labeled training dataset D4, and CNN model M 4 that was
trained to solve A using D,. Now consider a different but
related problem B such that the size of the dataset Dp is
limited. Instead of training a CNN model M p from scratch,
using transfer learning, model M4 is taken and fine-tuned
using Dp to obtain an accurate model to solve B.

In recent literature, deep transfer learning was used in
several contexts related to health and medical systems, such
as motor imagery electroencephalogram classification [15],
multichannel sleep stage classification [16], driver fatigue
detection [17], pulmonary diagnostics and infection detection
[18]. Inspired by these applications, in this study our goal is
to develop a transfer learning-based real-time physical activity
recognition framework, which can recognize subjects’ physical
activity in real-time using acceleration data acquired through
inertial measurement units (IMUs). Towards this goal, we
leveraged a pre-trained version of the GoogleNet architecture
[19], and modified and fine-tuned it with data originating from
IMUs. To make IMU data compatible with GoogLeNet, we
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developed three novel continuous wavelet transform (CWT)-
based data transform approaches: Horizontal Concatenation
(HC), Acceleration-Magnitude (AM), and Pixelwise Axes-
Averaging (PA). HC concatenates data from two IMUs (wrist
and chest). AM enables the usage of all three IMUs (wrist,
chest, ankle) by combining the magnitudes of X, Y, Z acceler-
ation axes. Finally, PA enables the usage of all three IMUs by
preserving the frequency information through axes averaging
rather than computing magnitudes. Experiment results with
real-world data show that, in terms of accuracy, PA > AM >
HC. In particular, PA achieves a validation accuracy of 98%
and test accuracy of 91%.

The rest of this paper is organized as follows: Section
II-A describes our dataset and physical activity recognition
problem. Section II-B discusses the preliminaries of CWT.
Sections II-C, II-D, and II-E introduce our novel CWT-based
data transform approaches. Section II-F presents the details of
our transfer learning and fine-tuning steps. Section III contains
our experimental evaluation and discussion. Finally, Section
IV concludes the paper.

II. METHODS
A. Dataset and Problem Description

In this study, we worked with the publicly available
PAMAP? dataset, which includes data from 9 healthy subjects
[20], [21]. Measurements were acquired at 100 Hz with Colibri
wireless inertial measurement units (IMUs) mounted on the
chest, the wrist of the dominant arm, and the ankle of the
dominant leg. We used the tri-axial acceleration data recorded
from these three IMUs. NaN values originating from wireless
data drop were removed using the intra-extrapolator provided
by John D’Errico [22]. A representative tri-axial acceleration
data from the wrist IMU is presented in Figure la.

Throughout the experimental protocol, participants were
asked to perform the following physical activities:

o Lying: Lying while doing nothing (small movements
were allowed).

« Walking: Walking outside with with a speed of 4-6km/h,
depending on the subject’s comfort.

o Running: Jogging outside with a speed suitable for the
subject.

e Cycling: Cycling outside with a speed suitable for the
subject as if the subject is riding to work or cycle for
pleasure (but not as a sport activity).

o Nordic Walking: Walking outside on asphaltic terrain,
using walking poles having asphalt pads.

o Ascending Stairs: Ascending a distance of at least five
floors in a building between the ground and the top floors.

o Descending Stairs: Descending a distance of at least five
floors in a building between the top and the ground floors.

e Ironing: Ironing one or two shirts or t-shirts.

o Rope Jumping: Performing basic jump or alternating
foot jump, whichever was more suitable for the subject.

Given acceleration data recorded from the aforementioned
IMUs, our task is to automatically recognize which physical

activity is being performed by the subject in real-time. In order
to simulate real-time data streaming, we work with sliding time
windows rather than using the time-series signals as a whole.
Information about window length and stride size used in each
approach is detailed in Sections II-C, II-D and II-E.

B. Continuous Wavelet Transform (CWT)

The first step of our framework is to use Continuous Wavelet
Transform (CWT) towards decomposing the IMU acceleration
data and obtaining a 2D coefficient matrix. CWT decomposes
a signal into a set of basis functions using a finite-length
function called the mother wavelet (V) [23]. Depending on
the application, different mother wavelets can be chosen. The
width and central frequency of ¥ can be changed by moving
it across the signal. These scaled and shifted versions of U are
called daughter wavelets, and can be combined to represent
the original signal, as shown in Equation 1.

t—T

)dt (1

S

+oo
F(r,s) = \i[ / OB A

Here, s is the scaling factor (compression or dilation), T
is the translation factor (time shift), f(¢) is the signal being
analyzed, and W* is the shifted and scaled mother wavelet. The
output F'(7, s) denotes the corresponding wavelet coefficients.

In our study, we first applied CWT on each signal window
and obtained a complex-valued 2D coefficient matrix. We
then computed the magnitude of this matrix by multiplying
it with its complex conjugate. The resulting matrix can be
treated as one channel of an image, i.e., each coefficient in the
matrix represents one pixel in the image, and the value of the
coefficient determines the color intensity of the corresponding
pixel. In case of a single channel, the resulting image is
gray-scale (low vs high intensity corresponds to blackness vs
whiteness of the pixel). In case of colored (RGB) images,
there exist 3 channels: Red (R), Green (G), Blue (B); each of
which can be populated by a different coefficient matrix. From
this point onwards, we will refer to the consecutive processes
of computing the 2D coefficient matrix and calculating its
magnitude as CWT.

C. Horizontal Concatenation (HC) Approach

We developed three approaches for physical activity recog-
nition, all of which leverage CWT and transfer learning. The
first approach is called Horizontal Concatenation (HC). In this
approach, tri-axial (X, Y and Z) acceleration signals from only
the chest and wrist IMUs are used; the ankle IMU is not used.
The window length was determined as 112. This is equal to
half of the required input image width for GoogLeNet (224),
which is the CNN we used for transfer learning. The stride size
was determined as 1/3 of the window length. The subsequent
processing steps performed by the HC approach are as follows:

1) Each of the X, Y, and Z axes windows were converted
into 2D coefficient matrices using CWT.

2) Resulting X, Y, and Z axes matrices were treated as the
red, green, and blue channels of an image respectively.
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Fig. 1.

(a) A representative tri-axial acceleration data from the wrist IMU. (b) Horizontal concatenation approach using the wrist and chest IMUs. (c)

Acceleration-magnitude approach using all three IMUs. (d) Pixelwise axes-averaging approach using all three IMUs.

The three channels were combined to construct an RGB
image per window, as shown in Figure 1b.

3) Per each window, the RGB image from the wrist IMU
and the RGB image from the chest IMU were concate-
nated horizontally to obtain a 224-by-224 image.

4) Resulting 224-by-224 RGB images were used to train,
validate and test the CNN.

D. Acceleration-Magnitude (AM) Approach

Our second approach is called Acceleration-Magnitude
(AM). In this approach, tri-axial (X, Y and Z) acceleration
signals from all three IMUs (chest, wrist and ankle) are used.
The window length was determined as 224, which is directly
equal to the input image width required by GoogLeNet.
Similar to the HC approach, stride size was determined as
1/3 of the chosen window length. The subsequent processing
steps performed by the AM approach are as follows:

1) For each IMU sensor, the acceleration magnitude of
the current window was computed in L, norm using
Equation 2. Let X;, Y; and Z; denote the X, Y, Z signals
from the 7’th window. The acceleration magnitude of the
i’th window, denoted by ||m||;, is:

Imlli = \/ X2+ Y7+ Z} )

2) CWT was applied separately on the magnitude signals
||m||; obtained from the chest, wrist, and ankle IMUs.

3) Resulting wavelet coefficient matrices were obtained
from the three IMUs. Treating the wrist IMU’s matrix
as the red channel, chest IMU’s matrix as the green
channel, and ankle IMU’s matrix as the blue channel,
an RGB image was constructed (224-by-224). A sample
image is illustrated in Figure lc.

4) Resulting 224-by-224 RGB images were used to train,
validate and test the CNN.

E. Pixelwise Axes-Averaging (PA) Approach

Our third approach is called Pixelwise Axes-Averaging
(PA). In this approach, similar to the AM approach, tri-axial

(X, Y and Z) acceleration signals from all three IMUs (chest,
wrist and ankle) are used. The window length was determined
as 450 (equal to 4.5 seconds), which was shown to be
appropriate and effective for activity recognition [24]. Similar
to the HC and AM approaches, stride size was determined as
1/3 of the chosen window length. The subsequent processing
steps performed by the PA approach are as follows:

1) Each of the X, Y and Z axes windows were converted
into 2D coefficient matrices using CWT.

2) Let Mx[j], My[j], and Mz[j] denote the j’th pixel in
the coefficient matrix of the X, Y and Z axis respectively.
The values of each pixel were averaged to construct a
matrix M:

_ Mx[j] + My [j] + Mz[j] 3)
3

3) The above step was repeated separately for all three
IMUs, which resulted in: one matrix for wrist IMU, one
matrix for chest IMU, one matrix for ankle IMU.

4) Matrices were resized to become 224-by-224, which is
the required input size for the CNN model.

5) Resulting matrices were used to construct an RGB image
per window, by treating the wrist IMU’s matrix as the
red channel, chest IMU’s matrix as the green channel,
and ankle IMU’s matrix as the blue channel. A sample
image is illustrated in Figure 1d.

6) Resulting 224-by-224 RGB images were used to train,
validate and test the CNN.

M{j]

E Transfer Learning with CNNs

In all three approaches (HC, AM, PA), the output datasets
consist of RGB images. These datasets can be used to train
deep learning models for physical activity recognition. How-
ever, to avoid training a deep CNN from scratch with limited
data and to leverage the power of pretrained models, we used
transfer learning. In particular, we applied transfer learning
with GoogleNet as our base (starting) model, which is a
popular, 22 layers deep CNN [19]. We used a pretrained
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Validation Accuracy | Test Accuracy
Horizontal Concatenation 0.93 0.75
Acceleration-Magnitude 0.95 0.85
Pixelwise Axes-Averaging 0.98 0.91
TABLE I

VALIDATION AND TEST ACCURACY RESULTS

version of GoogleNet that was trained using the ImageNet
image classification dataset [25]. This CNN originally takes
as input images of size 224-by-224 and classifies them into
1000 object categories.

In order to transfer this CNN to the physical activity recog-
nition problem, we performed the following. We discarded the
last 3 layers of the GoogLeNet architecture, which correspond
to a fully connected layer, a softmax layer, and an output layer
with 1000 output classes. We replaced them by a fresh fully
connected layer (with output size = 9), a softmax layer, and
an output layer with 9 classes and cross entropy loss function.
We then fine-tuned the whole CNN by updating all layers’
parameters using the RGB image dataset constructed by our
proposed approaches (HC, AM or PA). Following the intuition
that earlier layers of a CNN contain more generic features
whereas the later layers become progressively more special-
ized towards the task in hand, we used a higher learning rate
in the layers that have been freshly added. More specifically,
in order to learn the parameters of the newly added fully
connected layer faster than the rest of the CNN (which has
been pretrained), we set the learning rate factor for this layer
to be equal to 5 times the learning rate of the rest of the CNN.
This applied to both the weight and bias parameters.

III. EXPERIMENT RESULTS AND DISCUSSION

In this section, we experimentally evaluate each of the
three proposed approaches (HC, AM, PA) using the PAMAP2
dataset and discuss the evaluation results.

A. Experiment Setup

The training, validation and test datasets for the three
approaches (HC, AM, PA) were constructed separately, i.e.,
RGB images from two different approaches do not co-exist
in any dataset. Recall that the PAMAP2 dataset contains data
from 9 healthy subjects. In each approach, data from 2 subjects
were left out for testing. Data from the remaining 7 subjects
were used for constructing the training and validation sets.
We randomly shuffled the data from these 7 subjects and used
80% for training and 20% for validation.

Hyperparameters for fine-tuning the GoogLeNet CNN were
set as follows. The Adam solver was used as the optimization
algorithm. Initial learning rate was set to 0.0001, validation
frequency was set to 50, number of epochs was set to 10, and
minibatch size was set to 64. Models were trained on an Intel
17 CPU. Cross entropy was used as the loss function. The final
CNN was chosen as the network that had the best validation
loss throughout the iterations of fine-tuning.

B. Model Performance Results

After CNN models are trained, their accuracy on the vali-
dation and test sets are measured. As reported in Table I, we

obtained validation accuracy values of 0.93, 0.95, and 0.98 for
the Horizontal Concatenation (HC), Acceleration-Magnitude
(AM) and Pixelwise Axes-Averaging (PA) approaches, respec-
tively. In contrast, test accuracy values for the three approaches
were 0.75, 0.85, and 0.91 respectively. It is expected that the
test accuracy values are lower than validation accuracy, since
the training and validation sets included data from 7 subjects
whereas 2 subjects were left out. Since data from those 2
subjects are included in the test dataset, test accuracy suffers
from inter-subject variability. Nevertheless, accuracy values
remain competitive in general, considering that the accuracy
of random guessing is only 11%. In the rest of this section,
we evaluate and discuss each approach in more detail.

1) Horizontal Concatenation (HC) Approach: Compared
to the AM and PA approaches, the HC approach has lower
accuracy since it uses data only from two IMUs (ankle IMU is
not used by the HC approach). Window length being equal to
112 samples (1.12 seconds) was also a factor that contributed
the lower performance of HC, considering that 1.12 seconds
of data from chest and wrist IMUs may sometimes not be
sufficient to capture unique information needed to distinguish
between different physical activities.

In Table II, we report the precision, recall and F1 score of
the HC approach for each different physical activity. Across
all activities, the weighted precision, recall and F1 scores were
found to be 0.80, 0.75 and 0.75, respectively. We observe
that the model performs well for many activities (F1 score
> 0.8), but the F1 scores are relatively low for three activities
in particular: walking, ascending stairs, and descending stairs.
The F1 scores for these three activities are 0.58, 0.48 and
0.34. The reason behind this was further investigated using the
confusion matrix reported in Figure 2. The confusion matrix
shows that the data from ascending stairs, descending stairs,
Nordic walking and walking activities are typically the ones
that are confused with one another by the model. Notably,
these activities are all inherently walking-type activities, which
result in similar chest and wrist acceleration values. Therefore,
distinguishing between them was difficult using only the chest
and wrist IMUs. Since the ankle IMU carries information
regarding the walking style of the subject (upward, down-
ward, with walking pole, etc.) and/or frequency, AM and PA
approaches that leverage the ankle IMU perform much better
than HC in terms of the aforementioned activities.

2) Acceleration-Magnitude (AM) Approach: We report the
precision, recall and F1 score of the AM approach for each
different physical activity in Table III. Overall, using the AM
approach, we obtained a weighted precision, recall and F1
score of 0.87, 0.85 and 0.85, respectively. The AM approach
performs much better than the HC approach in terms of
the walking activity, considering that the F1 score for the
walking activity is similar to the other activities. Results for the
ascending and descending stairs activities are also substantially
better in AM compared to HC (F1 scores of 0.76 and 0.63
compared to 0.48 and 0.34); yet, these activities could not
reach the F1 scores of the other activities. We also observed a
small improvement in the recognition of the Nordic walking
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Precision | Recall | F1 Score
Lying 0.85 0.90 0.88
Walking 0.83 0.44 0.58
Running 0.93 0.93 0.93
Cycling 0.96 0.94 0.95
Nordic Walking 0.94 0.66 0.78
Ascending Stairs 0.34 0.82 0.48
Descending Stairs 0.52 0.25 0.34
Ironing 0.74 0.92 0.82
Rope Jumping 0.99 0.80 0.88
Unweighted Average 0.79 0.79 0.74
Weighted Average 0.80 0.75 0.75
TABLE II

RESULTS FOR THE HORIZONTAL CONCATENATION APPROACH

Confusion Matrix for Horizontal Concatenation Approach
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Fig. 2. Row-wise normalized confusion matrix for the HC approach.

activity relative to the HC approach. F1 score increased from
0.78 to 0.85, and normalized true positive ratio increased from
0.66 to 0.74 as shown in Figure 3. Overall, the most significant
improvement was in the walking activity: F1 score increased
from 0.58 to 0.88, and normalized true positive ratio increased
from 0.44 to 0.85.

The above improvements achieved by the AM approach can
be attributed to larger window length (224 samples, therefore
2.24 seconds) and the added value of data from the ankle
IMU. However, since finding the magnitude involves squaring
the signals with frequency contents, the AM approach still
remains incapable of handling differences related to frequency.
Thus, accuracy can be further improved by the PA approach.

3) Pixelwise Axes-Averaging (PA) Approach: We report the
precision, recall and F1 score of the PA approach in Table
IV. Overall, we obtained a weighted precision, recall and F1
score of 0.91, 0.91 and 0.91. These results show that the
PA approach is indeed the best performing one compared to
HC and AM. Notably, there are increases in the F1 scores
and normalized true positive ratios of all activities in the PA
approach compared to AM (also see Figure 4).

The PA approach performs exceptionally well for the run-
ning and ironing activities, in which normalized true positive
ratios of 1.00 and 0.99 are achieved, meaning that the model

Precision | Recall | F1 Score
Lying 0.92 0.87 0.89
Walking 0.91 0.85 0.88
Running 0.87 0.95 0.90
Cycling 0.99 0.94 0.96
Nordic Walking 0.99 0.74 0.85
Ascending Stairs 0.68 0.85 0.76
Descending Stairs 0.57 0.69 0.63
Ironing 0.78 0.95 0.86
Rope Jumping 0.97 0.72 0.82
Unweighted Average 0.85 0.84 0.84
Weighted Average 0.87 0.85 0.85
TABLE III

RESULTS FOR THE ACCELERATION-MAGNITUDE APPROACH

Confusion Matrix for Acceleration Magnitude Approach
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Fig. 3. Row-wise normalized confusion matrix for the AM approach.

performed almost perfectly in distinguishing these activities
from the remaining ones. Activities that have relatively lower
true positive ratios are Nordic walking, ascending stairs and
descending stairs (0.77, 0.87 and 0.77, respectively). Indeed,
all approaches (HC, AM, PA) have difficulty in recognizing
these three activities. Nevertheless, we note that the F1 scores
of ascending stairs and descending stairs activities are still
higher in PA (0.79 and 0.78) compared to AM (0.76 and 0.63)
and HC (0.48 and 0.34).

IV. CONCLUSION

In this paper, we developed three approaches for real-time
activity recognition from IMU data using transfer learning. We
leveraged a modified version of the well-known GoogLeNet
architecture as our base model for transfer learning. As the
original GoogLeNet CNN takes images of size 224-by-224
as input, we proposed three different CWT-based approaches
to convert IMU time series into 2D matrices: Horizontal Con-
catenation (HC), Acceleration-Magnitude (AM), and Pixelwise
Axes-Averaging (PA). We experimentally evaluated all three
approaches using the real-world PAMAP2 dataset. Overall,
the best performing approach was PA. AM performed slightly
worse than PA since its computation of magnitude causes the
loss of unique frequency information that PA benefits from.
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Actual Label
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Precision | Recall | F1 Score
Lying 0.96 0.93 0.95
Walking 0.91 0.92 0.92
Running 0.97 1.00 0.98
Cycling 1.00 0.96 0.98
Nordic Walking 0.99 0.77 0.87
Ascending Stairs 0.72 0.87 0.79
Descending Stairs 0.78 0.77 0.78
Ironing 0.92 0.99 0.95
Rope Jumping 1.00 0.93 0.96
Unweighted Average 0.92 0.90 091
Weighted Average 0.91 0.91 091
TABLE IV

RESULTS FOR THE PIXELWISE AVERAGING APPROACH
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Fig. 4. Row-wise normalized confusion matrix for the PA approach.

HC performed worse than PA and AM since it only uses two
IMUs and it has a smaller window length.

Among all three approaches, two common observations
were that (i) it was challenging to distinguish between two
activities in particular: ascending stairs and descending stairs,
and (ii) inter-subject variability decreases the activity recog-
nition accuracy of all three approaches, which can be ob-
served by the difference between the validation accuracy and
test accuracy values. Future work will include investigating
additional pre-processing approaches to overcome these chal-
lenges. Additionally, we will test our approaches on larger
datasets in order to better validate their generalizability.
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